Friday, 2 June 2017

Gleitender Mittlerer Prozessauftrag Q

2.1 Verschieben von Durchschnittsmodellen (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und / oder gleitende Durchschnittsterme enthalten. In Woche 1 erlernten wir einen autoregressiven Term in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Beispielsweise ist ein autoregressiver Term der Verzögerung 1 x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende Durchschnittsterme. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Es sei n (0, sigma2w) überschritten, was bedeutet, daß die wt identisch unabhängig voneinander verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das durch MA (1) bezeichnete gleitende Durchschnittsmodell der 1. Ordnung ist (xt mu wt theta1w) Das durch MA (2) bezeichnete gleitende Durchschnittsmodell der zweiten Ordnung ist (xt mu wt theta1w theta2w) Das gleitende Mittelmodell der q-ten Ordnung , Mit MA (q) bezeichnet, ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (nicht quadrierten) Ausdrücke in Formeln für ACFs und Abweichungen umwandelt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Vorzeichen verwendet worden sind, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Vorzeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Proben-ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) - Modell. Für interessierte Studierende, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handout. Beispiel 1 Angenommen, dass ein MA (1) - Modell x t 10 w t .7 w t-1 ist. Wobei (wt überstehendes N (0,1)). Somit ist der Koeffizient 1 0,7. Die theoretische ACF wird durch eine Plot dieser ACF folgt folgt. Die graphische Darstellung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis liefert eine Probe gewöhnlich ein solches klares Muster. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1) war. Für diese Simulation folgt ein Zeitreihen-Diagramm der Probendaten. Wir können nicht viel von dieser Handlung erzählen. Die Proben-ACF für die simulierten Daten folgt. Wir sehen eine Spitze bei Verzögerung 1, gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Es ist zu beachten, dass das Beispiel-ACF nicht mit dem theoretischen Muster des zugrunde liegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sein werden Eine andere Probe hätte eine geringfügig unterschiedliche Probe ACF wie unten gezeigt, hätte aber wahrscheinlich die gleichen breiten Merkmale. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) - Modell Für das MA (2) - Modell sind die theoretischen Eigenschaften die folgenden: Die einzigen Werte ungleich Null im theoretischen ACF sind für die Lags 1 und 2. Autokorrelationen für höhere Lags sind 0 , So zeigt ein Beispiel-ACF mit signifikanten Autokorrelationen bei Lags 1 und 2, aber nicht signifikante Autokorrelationen für höhere Lags ein mögliches MA (2) - Modell. Iid N (0,1). Die Koeffizienten betragen 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, wird der theoretische ACF nur bei den Verzögerungen 1 und 2 Werte ungleich Null aufweisen. Werte der beiden Nicht-Autokorrelationen sind A-Kurve des theoretischen ACF. Wie fast immer der Fall ist, verhalten sich Musterdaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Beispielwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wobei wt iid N (0,1) ist. Die Zeitreihenfolge der Daten folgt. Wie bei dem Zeitreihenplot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Proben-ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) - Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei Lags 1 und 2, gefolgt von nicht signifikanten Werten für andere Lags. Beachten Sie, dass aufgrund des Stichprobenfehlers das Muster ACF nicht genau dem theoretischen Muster entsprach. ACF für allgemeine MA (q) - Modelle Eine Eigenschaft von MA (q) - Modellen besteht im Allgemeinen darin, dass Autokorrelationen ungleich Null für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q vorhanden sind. Nicht-Eindeutigkeit der Verbindung zwischen Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) - Modell für einen Wert von 1. Die reziproke 1/1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0.5 für 1. Und dann 1 / (0,5) 2 für 1 verwenden. Youll erhalten (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung als Invertibilität zu befriedigen. Wir beschränken MA (1) - Modelle auf Werte mit einem Absolutwert von weniger als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, während 1 1 / 0,5 2 nicht. Invertibilität von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch Konvergenz meinen wir, dass die AR-Koeffizienten auf 0 sinken, wenn wir in der Zeit zurückgehen. Invertibilität ist eine Einschränkung, die in Zeitreihensoftware programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Begriffen abzuschätzen. Sein nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertibilitätsbeschränkung für MA (1) - Modelle finden Sie im Anhang. Fortgeschrittene Theorie Anmerkung. Für ein MA (q) - Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten Werte haben, daß die Gleichung 1- 1 y-. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 wurde der theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die R-Befehle, die verwendet wurden, um den theoretischen ACF aufzuzeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens lags, die im Bereich von 0 bis 10 liegt (H0) fügt dem Diagramm eine horizontale Achse hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Genannt acfma1 (unsere Wahl des Namens). Der Plotbefehl (der dritte Befehl) verläuft gegen die ACF-Werte für die Verzögerungen 1 bis 10. Der ylab-Parameter kennzeichnet die y-Achse und der Hauptparameter einen Titel auf dem Plot. Um die Zahlenwerte der ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und Diagramme wurden mit den folgenden Befehlen durchgeführt. (N150, list (mac (0.7))) Simuliert n 150 Werte aus MA (1) xxc10 addiert 10 zum Mittelwert 10. Simulationsvorgaben bedeuten 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurde der theoretische ACF des Modells xt 10 wt. 5 w t-1 .3 w t-2 aufgetragen. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 Plot (lags, acfma2, xlimc (1,10), ylabr, typh, main ACF für MA (2) mit theta1 0,5, (X, x) (x, x) (x, x, x, y) (1) Für interessierte Studierende sind hier Beweise für die theoretischen Eigenschaften des MA (1) - Modells. Variante: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1 der vorhergehende Ausdruck 1 w 2. Für irgendeinen h 2 ist der vorhergehende Ausdruck 0 Der Grund dafür ist, dass, durch Definition der Unabhängigkeit der wt. E (w k w j) 0 für beliebige k j. Da w w die Mittelwerte 0, E (w j w j) E (w j 2) w 2 haben. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um den oben angegebenen ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so daß die AR-Koeffizienten gegen 0 konvergieren, wenn wir unendlich zurück in der Zeit bewegen. Gut zeigen Invertibilität für die MA (1) - Modell. Dann setzen wir die Beziehung (2) für wt-1 in Gleichung (1) (3) ein (zt wt theta1 (z-therma1w) wt theta1z - theta2w) Zum Zeitpunkt t-2. Gleichung (2) wird dann in Gleichung (3) die Gleichung (4) für wt-2 ersetzen (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Unendlich), erhalten wir das unendliche Ordnungs-AR-Modell (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z vergrößern, (unendlich) in der Größe zunehmen werden Zeit. Um dies zu verhindern, benötigen wir 1 lt1. Dies ist die Bedingung für ein invertierbares MA (1) - Modell. Unendlich Ordnung MA Modell In Woche 3, gut sehen, dass ein AR (1) Modell in ein unendliches order MA Modell umgewandelt werden kann: (xt - mu wt phi1w phi21w Punkte phik1 w Punkte sum phij1w) Diese Summation der Vergangenheit weißer Rauschbegriffe ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Anforderung für eine stationäre AR (1) ist, dass 1 lt1. Berechnen Sie die Var (x t) mit der kausalen Darstellung. Dieser letzte Schritt verwendet eine Grundtatsache über geometrische Reihen, die (phi1lt1) erforderlich sind, ansonsten divergiert die Reihe. NavigationAutoregressive Moving Average ARMA (p, q) Modelle für die Zeitreihenanalyse - Teil 2 Von Michael Halls-Moore am 24. August 2015 Im Teil 1 betrachteten wir das autoregressive Modell der Ordnung p, auch als AR (p) - Modell bekannt. Wir führten es als eine Erweiterung des Zufallsmodells ein, um eine weitere serielle Korrelation in finanziellen Zeitreihen zu erläutern. Schließlich erkannten wir, dass es nicht genügend flexibel war, um alle Autokorrelationen in den Schlusskursen der Amazon Inc. (AMZN) und des SampP500 US Equity Index wirklich zu erfassen. Der Hauptgrund dafür ist, dass beide Vermögenswerte bedingt heteroskedastisch sind. Was bedeutet, dass sie nicht-stationär sind und Perioden variierender Varianz oder Volatilitäts-Clustering aufweisen, was von dem AR (p) - Modell nicht berücksichtigt wird. In künftigen Artikeln werden wir schließlich die Autoregressive Integrated Moving Average (ARIMA) Modelle sowie die bedingt heteroskedastischen Modelle der ARCH - und GARCH-Familien aufbauen. Diese Modelle werden uns unsere ersten realistischen Versuche zur Prognose von Vermögenspreisen bieten. In diesem Artikel werden wir jedoch die Moving Average der Ordnung q-Modell, bekannt als MA (q) einzuführen. Dies ist ein Teil des allgemeineren ARMA-Modells und als solches müssen wir es verstehen, bevor wir weitergehen. Ich empfehle Ihnen, lesen Sie die vorherigen Artikel in der Zeitreihe Analyse-Sammlung, wenn Sie dies nicht getan haben. Sie können alle hier gefunden werden. Moving Average (MA) Modelle der Ordnung q Begründung Ein Moving Average-Modell ähnelt einem autoregressiven Modell, mit der Ausnahme, dass es sich nicht um eine lineare Kombination aus vergangenen Zeitreihenwerten handelt, sondern um eine lineare Kombination der vergangenen weißen Rauschterme. Intuitiv bedeutet dies, dass das MA-Modell solche zufälligen weißen Rauschschocks direkt bei jedem aktuellen Wert des Modells sieht. Dies steht im Gegensatz zu einem AR (p) - Modell, wo die weißen Rauschschocks nur indirekt gesehen werden. Über Regression auf frühere Ausdrücke der Reihe. Ein wesentlicher Unterschied besteht darin, dass das MA-Modell nur die letzten q-Schocks für ein bestimmtes MA (q) - Modell sehen wird, während das AR (p) - Modell alle vorherigen Schocks berücksichtigt, wenn auch in einer abnehmend schwachen Weise. Definition Mathematisch ist das MA (q) ein lineares Regressionsmodell und ist ähnlich strukturiert nach AR (p): Moving Average Modell der Ordnung q Ein Zeitreihenmodell ist ein gleitendes Durchschnittsmodell der Ordnung q. MA (q), wenn: Anfang xt wt beta1 w ldots betaq w end Wo ist weißes Rauschen mit E (wt) 0 und Varianz sigma2. Wenn wir den Backward Shift Operator betrachten. (Siehe vorhergehender Artikel), so können wir die obigen Funktionen als Funktion phi folgendermaßen umschreiben: begin xt (1 beta1 beta2 2 ldots betaq q) wt phiq () wt end Wir werden in späteren Artikeln die phi-Funktion nutzen. Eigenschaften der zweiten Ordnung Wie bei AR (p) ist der Mittelwert eines MA (q) - Verfahrens gleich Null. Dies ist leicht zu sehen, da der Mittelwert einfach eine Summe von Mitteln von weißen Rauschtermen ist, die alle selbst Null sind. Anfang Text enspace sigma2w (1 beta21 ldots beta2q) Ende Text enspace rhok links 1 Text enspace k 0 Summe beta beta / sumq beta2i Text enspace k 1, ldots, q 0 Text enspace k gt q Ende rechts. Wo beta0 1. Wurden jetzt einige simulierte Daten generieren und verwenden, um correlograms zu erstellen. Dies wird die obige Formel für rhok etwas konkreter machen. Simulationen und Correlogramme MA (1) Beginnen wir mit einem MA (1) - Prozess. Wenn wir beta1 0.6 setzen, erhalten wir das folgende Modell: Wie bei den AR (p) - Modellen im vorherigen Artikel können wir R verwenden, um eine solche Reihe zu simulieren und dann das Korrelogramm zu zeichnen. Da wir in der vorigen Zeitreihenanalyse eine Reihe von Übungen durchführen, werde ich den R-Code vollständig schreiben, anstatt ihn aufzuteilen: Die Ausgabe ist wie folgt: Wie wir oben in der Formel für rhok gesehen haben , Für k gt q sollten alle Autokorrelationen Null sein. Da q 1 ist, sollten wir einen signifikanten Peak bei k1 und dann danach signifikante Peaks sehen. Aufgrund der Stichprobenvorhersage sollten wir jedoch erwarten, dass 5 (marginal) signifikante Peaks auf einer Stichproben-Autokorrelationskurve zu sehen sind. Genau das zeigt uns das Korrelogramm. Wir haben einen signifikanten Peak bei k1 und dann unbedeutende Peaks für k gt 1, mit Ausnahme von k4, wo wir einen marginell signifikanten Peak haben. Tatsächlich ist dies eine nützliche Möglichkeit, zu sehen, ob ein MA (q) - Modell geeignet ist. Durch Betrachten des Korrelogramms einer bestimmten Reihe können wir sehen, wie viele sequenzielle Nicht-Null-Verzögerungen existieren. Wenn q solche Lags existieren, dann können wir legitimerweise versuchen, ein MA (q) - Modell an eine bestimmte Serie anzupassen. Da wir Beweise aus unseren simulierten Daten eines MA (1) - Prozesses haben, sollten wir nun versuchen, ein MA (1) - Modell an unsere simulierten Daten anzupassen. Leider gibt es keinen äquivalenten ma Befehl zum autoregressiven Modell ar Befehl in R. Stattdessen müssen wir den allgemeineren arima Befehl benutzen und die autoregressiven und integrierten Komponenten auf Null setzen. Dazu erstellen wir einen 3-Vektor und setzen die ersten beiden Komponenten (die autogressiven und integrierten Parameter) auf Null: Wir erhalten eine nützliche Ausgabe aus dem Befehl arima. Erstens können wir sehen, dass der Parameter als Hut 0.602 geschätzt wurde, der sehr nahe am wahren Wert von beta1 0,6 liegt. Zweitens sind die Standardfehler bereits für uns berechnet, so dass es einfach ist, Konfidenzintervalle zu berechnen. Drittens erhalten wir eine geschätzte Varianz, Log-Likelihood und Akaike Information Criterion (notwendig für Modellvergleich). Der Hauptunterschied zwischen arima und ar ist, dass arima einen Intercept-Term schätzt, da er den Mittelwert der Serie nicht subtrahiert. Daher müssen wir vorsichtig sein, wenn wir Vorhersagen mit dem Befehl arima durchführen. Nun wieder auf diesen Punkt später. Wie ein schneller Check wurden, um Konfidenzintervalle für Hut zu berechnen: Wir können sehen, dass die 95 Konfidenzintervall den wahren Parameterwert von beta1 0,6 enthält und so können wir beurteilen, das Modell eine gute Passform. Offensichtlich sollte das erwartet werden, da wir die Daten an erster Stelle simuliert haben. Wie ändern sich die Dinge, wenn wir das Vorzeichen von beta1 auf -0.6 ändern, können wir die gleiche Analyse durchführen: Die Ausgabe ist wie folgt: Wir können sehen, dass wir bei k1 einen signifikanten Wert haben Peak im Korrelogramm, mit der Ausnahme, dass es eine negative Korrelation zeigt, wie sie von einem MA (1) - Modell mit negativem ersten Koeffizienten erwartet wird. Wiederum sind alle Peaks jenseits von k1 unbedeutend. Ermöglicht ein MA (1) - Modell und schätzen den Parameter: Hut -0.730, was eine kleine Unterbewertung von beta1 -0.6 ist. Schließlich lässt sich das Konfidenzintervall berechnen: Wir können sehen, dass der wahre Parameterwert von beta1-0.6 innerhalb des 95 Konfidenzintervalls enthalten ist, was uns den Beweis für ein gutes Modell passt. MA (3) Durchläuft das gleiche Verfahren für ein MA (3) - Verfahren. Diesmal sollten signifikante Peaks bei k in und unbedeutende Peaks für k gt 3 erwartet werden. Wir verwenden die folgenden Koeffizienten: beta1 0,6, beta2 0,4 und beta3 0,2. Wir können einen MA (3) Prozess von diesem Modell simulieren. Ive erhöhte die Anzahl der zufälligen Proben auf 1000 in dieser Simulation, was es leichter macht, die wahre Autokorrelationsstruktur zu sehen, und zwar auf Kosten der Herstellung der Originalreihe schwerer zu interpretieren: Die Ausgabe ist wie folgt: Wie erwartet sind die ersten drei Spitzen signifikant . Jedoch ist so das vierte. Aber wir können legitim vorschlagen, dass dies auf eine Stichprobe zurückzuführen ist, da wir erwarten, dass 5 der Peaks signifikant über kq liegen. Nun kann ein MA (3) - Modell an die Daten angepasst werden, um die Parameter zu probieren und zu schätzen: Die Schätzwerte Hut 0,544, Hut 0,345 und Hut 0,228 liegen nahe bei den wahren Werten von beta10,6, beta20,4 bzw. beta30,3. Wir können auch Konfidenzintervalle mit den jeweiligen Standardfehlern erzeugen: In jedem Fall enthalten die 95 Konfidenzintervalle den wahren Parameterwert und wir können schließen, dass wir, wie zu erwarten, gut mit unserem MA (3) - Modell übereinstimmen. Finanzdaten In Teil 1 betrachteten wir Amazon Inc. (AMZN) und den SampP500 US Equity Index. Wir passten das AR (p) - Modell an beide an und fanden, dass das Modell nicht in der Lage war, die Komplexität der seriellen Korrelation effektiv zu erfassen, vor allem im Guss des SampP500, wo Langzeitgedächtniseffekte zu sein scheinen. Ich wont plot die Diagramme wieder für die Preise und Autokorrelation, statt Ill weisen Sie auf die vorherige Post. Amazon Inc. (AMZN) Beginnen wir mit dem Versuch, eine Auswahl von MA (q) - Modellen an AMZN, nämlich mit q in passen. Wie in Teil 1, verwenden Sie quantmod, um die täglichen Preise für AMZN herunterzuladen und sie dann in ein Protokoll umzuwandeln, um Strom von Schlusskursen zurückzugeben: Jetzt können wir den Befehl arima verwenden, um MA (1), MA zu passen (2) und MA (3) - Modellen und schätzen dann die Parameter von jedem. Für MA (1) haben wir: Wir können die Residuen der täglichen Log-Rückkehr und des angepassten Modells darstellen: Beachten Sie, dass wir einige signifikante Peaks bei den Lags k2, k11, k16 und k18 haben, was anzeigt, dass das MA (1) - Modell ist Unwahrscheinlich, dass eine gute Passform für das Verhalten der AMZN-Log-Rückkehr, da dies nicht aussehen wie eine Verwirklichung von weißem Rauschen. Lets try ein MA (2) - Modell: Beide Schätzungen für die Beta-Koeffizienten sind negativ. Wir können die Residuen wieder zeichnen: Wir können sehen, dass es fast Null Autokorrelation in den ersten paar Verzögerungen. Allerdings haben wir fünf marginale signifikante Peaks bei den Verzögerungen k12, k16, k19, k25 und k27. Dies ist naheliegend, dass das MA (2) - Modell viel von der Autokorrelation erfasst, aber nicht alle Langzeitspeicher-Effekte. Wie sieht es mit einem MA (3) - Modell aus? Wiederum können die Residuen geplottet werden: Das MA (3) Residualplot sieht fast identisch mit dem MA (2) - Modell aus. Dies ist nicht verwunderlich, wie das Hinzufügen eines neuen Parameters zu einem Modell, scheinbar erklärt hat viel von den Korrelationen bei kürzeren Verzögerungen, aber das hat nicht viel Einfluss auf die längerfristigen Verzögerungen. Alle diese Beweise deuten darauf hin, dass ein MA (q) - Modell ist unwahrscheinlich, dass es nützlich sein, zu erklären, alle der seriellen Korrelation in Isolation. Zumindest für AMZN. SampP500 Wenn Sie sich erinnern, in Teil 1 sahen wir, dass die erste Reihenfolge differenzierte tägliche Log Rückkehr Struktur des SampP500 besaß viele signifikante Peaks bei verschiedenen Lags, sowohl kurz als auch lang. Dies zeigte sowohl die bedingte Heteroskedastizität (d. H. Die Volatilitäts-Clusterbildung) als auch die Langzeitspeicher-Effekte. Es führte zu dem Schluss, dass das AR (p) - Modell nicht ausreicht, um die gesamte vorhandene Autokorrelation zu erfassen. Wie wir oben gesehen haben, reicht das MA (q) - Modell nicht aus, um zusätzliche Serienkorrelationen in den Resten des eingebauten Modells auf die differenzierten täglichen Log-Preisreihen erster Ordnung zu erfassen. Wir werden nun versuchen, das MA (q) - Modell an den SampP500 anzupassen. Man könnte fragen, warum wir dies tun, wenn wir wissen, dass es unwahrscheinlich, dass eine gute Passform ist. Das ist eine gute Frage. Die Antwort ist, dass wir genau sehen müssen, wie es nicht eine gute Passform ist, denn dies ist der ultimative Prozess, dem wir folgen werden, wenn wir auf sehr viel anspruchsvollere Modelle stoßen, die möglicherweise schwerer zu interpretieren sind. Lets beginnen mit dem Erhalten der Daten und die Umwandlung in eine erste Reihenfolge differenzierte Reihe von logarithmisch umgewandelt täglichen Schlusskurse wie im vorherigen Artikel: Wir werden jetzt ein MA (1), MA (2) und MA (3) - Modell zu passen Die Serie, wie wir oben für AMZN. Beginnen wir mit MA (1): Machen wir eine Auftragung der Residuen dieses angepassten Modells: Der erste signifikante Peak tritt bei k2 auf, aber es gibt viel mehr bei k in. Dies ist eindeutig keine Verwirklichung von weißem Rauschen und deshalb müssen wir das MA (1) - Modell als eine für den SampP500 geeignete Potenz ablehnen. (2) Wiederum lassen sich die Residuen dieses angepassten MA (2) - Modells machen: Während der Peak bei k2 verschwunden ist (wie wir es erwarten), bleiben wir mit den signifikanten Peaks bei Viele längere Verzögerungen in den Resten. Noch einmal, finden wir das MA (2) - Modell ist nicht eine gute Passform. Für das MA (3) - Modell ist zu erwarten, dass bei k3 weniger serielle Korrelation als bei der MA (2) zu sehen ist, doch sollten wir auch hier keine Reduzierung weiterer Verzögerungen erwarten. Schließlich lässt sich eine Auftragung der Residuen dieses angepassten MA (3) - Modells machen: Genau das sehen wir im Korrelogramm der Residuen. Daher ist die MA (3), wie bei den anderen Modellen oben, nicht gut für den SampP500 geeignet. Die nächsten Schritte Weve untersuchte nun zwei große Zeitreihenmodelle im Detail, nämlich das autogressive Modell der Ordnung p, AR (p) und dann den Moving Average der Ordnung q, MA (q). Wir haben gesehen, dass sie beide in der Lage sind, einige der Autokorrelation in den Resten der ersten Ordnung differenzierte tägliche Log-Preise von Aktien und Indizes weg zu erklären, aber Volatilitäts-Clustering und Lang-Speicher-Effekte bestehen. Es ist endlich Zeit, unsere Aufmerksamkeit auf die Kombination dieser beiden Modelle, nämlich der Autoregressive Moving Average der Ordnung p, q, ARMA (p, q) zu lenken, um zu sehen, ob es die Situation weiter verbessern wird. Allerdings müssen wir warten, bis der nächste Artikel für eine vollständige Diskussion Michael Halls-Moore Mike ist der Gründer von QuantStart und hat in der quantitativen Finanzindustrie für die letzten fünf Jahre, in erster Linie als Quant-Entwickler und später als Quant (P, d, q) Modelle für die Zeitreihenanalyse Von Michael Halls-Moore am 15. September 2015 Im vorigen Satz von Artikeln (Teile 1. 2 und 3) gingen wir hinein (P), MA (q) und ARMA (p, q) lineare Zeitreihenmodelle. Wir verwendeten diese Modelle zur Generierung von simulierten Datensätzen, angepassten Modellen, um Parameter zurückzugewinnen und diese Modelle dann auf Finanzaktiendaten anzuwenden. In diesem Artikel werden wir eine Erweiterung des ARMA-Modells diskutieren, nämlich das Modell Autoregressive Integrated Moving Average oder das Modell ARIMA (p, d, q). Wir werden sehen, dass es notwendig ist, das ARIMA-Modell zu betrachten, wenn wir nicht stationäre Serien haben. Solche Reihen treten in der Gegenwart von stochastischen Trends auf. Quick Recap und die nächsten Schritte Bisher haben wir die folgenden Modelle betrachtet (die Links führen zu den entsprechenden Artikeln): Wir haben unser Verständnis von Zeitreihen mit Konzepten wie Serienkorrelation, Stationarität, Linearität, Residuen, Korrektrammen, Simulation, Montage, Saisonalität, bedingte Heterosedastizität und Hypothesentests. Bis jetzt haben wir keine Vorhersage oder Prognose aus unseren Modellen durchgeführt und daher keinen Mechanismus zur Herstellung eines Handelssystems oder einer Eigenkapitalkurve gehabt. Sobald wir ARIMA (in diesem Artikel), ARCH und GARCH (in den nächsten Artikeln) studiert haben, werden wir in der Lage sein, eine grundlegende langfristige Handelsstrategie auf der Grundlage der Vorhersage der Aktienindexrenditen aufzubauen. Trotz der Tatsache, dass ich in viele Details über Modelle, die wir kennen wird letztlich nicht über eine große Leistung (AR, MA, ARMA) gegangen sind, sind wir nun gut versiert in den Prozess der Zeitreihen-Modellierung. Dies bedeutet, dass wir, wenn wir neuere Modelle (und sogar solche, die derzeit in der Forschungsliteratur studieren), über eine wichtige Wissensbasis verfügen, um diese Modelle effektiv zu bewerten, anstatt sie als Schlüssel zu behandeln Verschreibung oder Black Box. Noch wichtiger ist, wird es uns mit dem Vertrauen zu erweitern und zu modifizieren sie auf unsere eigenen und verstehen, was wir tun, wenn wir es tun Id wie vielen Dank für Ihre Geduld so weit, wie es scheinen mag, dass diese Artikel weit entfernt sind Die eigentliche Handlung des tatsächlichen Handels. Allerdings echte quantitative Handelsforschung ist vorsichtig, gemessen und nimmt erhebliche Zeit, um richtig zu bekommen. Es gibt keine schnelle Lösung oder reiches Schema in quant trading. Wir waren sehr bereit, unser erstes Handelsmodell, das eine Mischung aus ARIMA und GARCH sein wird, zu berücksichtigen. Daher ist es zwingend notwendig, dass wir einige Zeit damit verbringen, das ARIMA-Modell gut zu verstehen. Sobald wir unser erstes Handelsmodell gebaut haben, werden wir mehr berücksichtigen Fortgeschrittene Modelle wie Langzeitgedächtnisprozesse, State-Space-Modelle (dh der Kalman-Filter) und Vector Autoregressive (VAR) Modelle, die uns zu anderen, anspruchsvolleren Handelsstrategien führen werden. Autoregressive Integrated Moving Average (ARIMA) Modelle der Ordnung p, d, q Begründung ARIMA-Modelle werden verwendet, da sie eine nicht stationäre Serie auf eine stationäre Serie reduzieren können. Wir können uns an den Artikel über weißes Rauschen und zufällige Wanderungen erinnern, daß wir, wenn wir den Differenzoperator auf eine zufällige Wegserie (eine nicht stationäre Reihe) anwenden, mit weißem Rauschen (einer stationären Reihe) verlassen werden: begin nabla xt xt - x wt Ende führt ARIMA diese Funktion im Wesentlichen aus, tut dies jedoch wiederholt d-mal, um eine nicht-stationäre Serie auf eine stationäre zu reduzieren. Um andere Formen der Nicht-Stationarität über stochastische Trends hinaus zu bewältigen, können zusätzliche Modelle verwendet werden. Saisonale Effekte (wie die, die in den Rohstoffpreisen auftreten) können mit dem saisonalen ARIMA-Modell (SARIMA) angegangen werden, aber wir werden nicht über SARIMA viel in dieser Serie diskutieren. Bedingte heteroscedastische Effekte (wie bei Volatilitäts-Clustering in Aktienindizes) können mit ARCH / GARCH angegangen werden. In diesem Artikel werden wir betrachten nicht-stationäre Serie mit stochastischen Trends und passen ARIMA-Modelle zu diesen Serien. Wir werden auch endlich Prognosen für unsere Finanzserie produzieren. Definitionen Vor der Definition von ARIMA-Prozessen müssen wir das Konzept einer integrierten Reihe diskutieren: Integrierte Reihenfolge d Eine Zeitreihe ist in Ordnung d integriert. I (d), wenn: begin nablad xt wt end Das heißt, wenn wir die Serie d mal differenzieren, erhalten wir eine diskrete weiße Rauschenserie. Alternativ können wir mit dem Backward Shift Operator eine äquivalente Bedingung definieren: Nachdem wir eine integrierte Serie definiert haben, können wir den ARIMA Prozess selbst definieren: Autoregressives Integriertes Moving Average Modell der Ordnung p, d, q Eine Zeitreihe ist ein autoregressives integriertes gleitendes Durchschnittsmodell Der Ordnung p, d, q. ARIMA (p, d, q). Wenn nablad xt ein autoregressiver gleitender Durchschnitt der Ordnung p, q, ARMA (p, q) ist. Das heißt, wenn die Reihe d-mal differenziert wird und dann einem ARMA (p, q) - Prozess folgt, dann handelt es sich um eine ARIMA-Reihe (p, d, q). Wenn wir die Polynomnotation aus Teil 1 und Teil 2 der ARMA-Reihe verwenden, dann kann ein ARIMA (p, d, q) - Prozeß in Form des Rückwärtsverschiebungsoperators geschrieben werden. : Wobei wt eine diskrete weiße Rauschreihe ist. Es gibt einige Punkte, um über diese Definitionen zu beachten. Da der zufällige Weg durch xt x wt gegeben ist, kann man sehen, daß I (1) eine andere Darstellung ist, da nabla1 xt wt. Wenn wir einen nicht-linearen Trend vermuten, könnten wir möglicherweise in der Lage sein, wiederholtes Differenzieren (d. h. d gt & sub1;) zu verwenden, um eine Reihe auf stationäres weißes Rauschen zu reduzieren. In R können wir den diff-Befehl mit zusätzlichen Parametern verwenden, z. B. Diff (x, d3), um wiederholte Differenzen auszuführen. Simulation, Correlogram und Modellbefestigung Da wir bereits den Befehl arima. sim verwendet haben, um einen ARMA (p, q) Prozess zu simulieren, ist das folgende Verfahren ähnlich dem in Teil 3 der ARMA Serie. Der Hauptunterschied ist, dass wir nun d1 setzen, dh, wir werden eine nicht-stationäre Zeitreihe mit einer stochastischen Trending-Komponente erzeugen. Nach wie vor passen wir ein ARIMA-Modell an unsere simulierten Daten an, versuchen, die Parameter wiederherzustellen, Konfidenzintervalle für diese Parameter zu erzeugen, ein Korrelogramm der Residuen des eingebauten Modells zu erstellen und schließlich einen Ljung-Box-Test durchzuführen, um festzustellen, ob wir es haben eine gute Passform. Wir werden ein ARIMA (1,1,1) Modell mit dem autoregressiven Koeffizienten alpha0,6 und dem gleitenden mittleren Koeffizienten beta-0,5 simulieren. Hier ist der R-Code zu simulieren und plotten eine solche Serie: Nun, da wir unsere simulierte Serie werden wir versuchen zu versuchen und passen ein ARIMA (1,1,1) - Modell. Da wir die Reihenfolge kennen, geben wir sie einfach im Fit an: Die Konfidenzintervalle werden berechnet als: Die beiden Parameterschätzungen liegen innerhalb der Konfidenzintervalle und liegen nahe bei den wahren Parameterwerten der simulierten ARIMA-Reihe. Daher sollten wir nicht überrascht sein, die Residuen zu sehen, die wie eine Realisierung von diskreten weißen Rauschen aussehen: Schließlich können wir einen Ljung-Box-Test durchführen, um statistische Beweise für eine gute Passform zu liefern: Wir können sehen, dass der p-Wert signifikant größer ist als 0,05 und als solche können wir sagen, dass es einen starken Beweis für diskrete weiße Rauschen, die eine gute Passung zu den Resten ist. Daher ist das ARIMA (1,1,1) - Modell, wie erwartet, eine gute Passform. Finanzdaten und Prognosen In diesem Abschnitt werden wir ARIMA-Modelle an Amazon, Inc. (AMZN) und den SampP500 US Equity Index (GPSC, in Yahoo Finance) anpassen. Wir verwenden die Prognose-Bibliothek, geschrieben von Rob J Hyndman. Gehen Sie voran und installieren Sie die Bibliothek in R: Jetzt können wir quantmod nutzen, um die tägliche Preisreihe von Amazon ab Anfang 2013 herunterzuladen. Da wir schon die ersten Bestellunterschiede der Serie genommen haben, wird die ARIMA fit in Kürze durchgeführt Benötigen wir für die integrierte Komponente nicht d gt 0: Wie in Teil 3 der ARMA-Reihe werden wir nun die Kombinationen von p, d und q durchlaufen, um das optimale ARIMA (p, d, q) Modell zu finden. Unter optimaler Bedeutung verstehen wir die Ordnungskombination, die das Akaike Information Criterion (AIC) minimiert: Wir können sehen, dass eine Ordnung von p4, d0, q4 ausgewählt wurde. Bemerkenswert ist d0, wie wir bereits oben besprochen haben: Wenn wir das Korrelogramm der Residuen darstellen, können wir sehen, ob wir Beweise für eine diskrete weiße Rauschenreihe haben: Es gibt zwei signifikante Peaks, nämlich bei k15 und k21, obwohl wir es sollten Erwarten, statistisch signifikante Peaks nur aufgrund der Abtastvariation 5 der Zeit zu sehen. Wir können einen Ljung-Box-Test durchführen (siehe vorherigen Artikel) und sehen, ob wir Beweise für eine gute Passform haben: Wie wir sehen können, ist der p-Wert größer als 0,05 und so haben wir Beweise für eine gute Passform auf der 95-Ebene. Wir können nun den Prognosebefehl aus der Prognosebibliothek verwenden, um 25 Tage vor der Rendite-Serie von Amazon zu prognostizieren: Wir sehen die Punktprognosen für die nächsten 25 Tage mit 95 (dunkelblau) und 99 (hellblau) Fehlerbändern . Wir werden diese Prognosen in unserer ersten Zeitreihenhandelsstrategie verwenden, wenn wir kommen, um ARIMA und GARCH zu kombinieren. Wir können das gleiche Verfahren für den SampP500 durchführen. Zuerst erhalten wir die Daten von quantmod und konvertieren sie in einen täglichen log returns stream: Wir passen ein ARIMA Modell, indem wir die Werte von p, d und q durchlaufen: Die AIC sagt uns, dass das beste Modell die ARIMA (2,0, 1) - Modell. Beachten Sie noch einmal, dass d0, da wir bereits erste Ordnung Unterschiede der Serie genommen haben: Wir können die Residuen des eingebauten Modells zu sehen, ob wir Beweise für diskretes weißes Rauschen haben: Das Korrelogram sieht vielversprechend, so dass der nächste Schritt zu laufen ist Die Ljung-Box-Test und bestätigen, dass wir ein gutes Modell passen: Da der p-Wert größer als 0,05 haben wir Beweise für eine gute Modell passen. Warum ist es, dass im vorherigen Artikel unsere Ljung-Box-Test für die SampP500 zeigte, dass die ARMA (3,3) war eine schlechte Passform für die tägliche Log Rückkehr Beachten Sie, dass ich absichtlich beschnitten die SampP500 Daten ab 2013 beginnen in diesem Artikel , Die die volatilen Perioden um 2007-2008 praktisch ausschließt. Daher haben wir einen großen Teil des SampP500 ausgeschlossen, wo wir eine übermäßige Volatilitäts-Clusterbildung hatten. Dies wirkt sich auf die serielle Korrelation der Reihe aus und hat daher die Wirkung, die Serie scheinbar stationärer zu machen als in der Vergangenheit. Dies ist ein sehr wichtiger Punkt. Bei der Analyse von Zeitreihen müssen wir sehr vorsichtig auf bedingt heteroszedierte Serien wie Börsenindizes achten. In quantitativen Finanzen ist der Versuch, Perioden mit unterschiedlicher Volatilität zu bestimmen, oft als Regime-Detektion bekannt. Es ist eine der härteren Aufgaben zu erreichen Nun besprechen diesen Punkt ausführlich im nächsten Artikel, wenn wir die ARCH und GARCH Modelle zu betrachten. Wir können nun eine Prognose für die nächsten 25 Tage der SampP500-täglichen Log-Rückkehr erstellen: Nachdem wir nun die Möglichkeit haben, Modelle wie ARIMA anzupassen und zu prognostizieren, waren wir sehr nahe daran, Strategieindikatoren für den Handel zu schaffen. Nächste Schritte Im nächsten Artikel werden wir einen Blick auf die Generalized Autoregressive Conditional Heteroscedasticity (GARCH) - Modell und verwenden Sie es zu erklären, mehr der seriellen Korrelation in bestimmten Aktien-und Aktienindex-Serie. Sobald wir GARCH diskutiert haben, werden wir in der Lage sein, es mit dem ARIMA-Modell zu kombinieren und Signalindikatoren und damit eine grundlegende quantitative Handelsstrategie zu schaffen. Michael Halls-Moore Mike ist der Begründer von QuantStart und seit fünf Jahren in der quantitativen Finanzbranche tätig, vorwiegend als Quant-Entwickler und später als Quant-Trader-Consulting für Hedgefonds. Umfassender Durchschnitt - MA Als SMA-Beispiel gilt eine Sicherheit mit folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26 , 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für die ersten 10 Tage als ersten Datenpunkt ausrechnen. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge des zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Abwärts-Momentum wird mit einem bärischen Übergang bestätigt, der auftritt, wenn ein kurzfristiger MA unter einem längerfristigen MA geht. Der erste Schritt bei der Entwicklung eines Box-Jenkins-Modells besteht darin, festzustellen, ob die Serie stationär ist und ob es eine signifikante Saisonalität gibt Das modelliert werden muss. Stationarität kann anhand eines Ablaufablaufplots beurteilt werden. Das Ablaufdiagramm sollte eine konstante Position und Skalierung aufweisen. Es kann auch aus einem Autokorrelationsdiagramm nachgewiesen werden. Insbesondere wird die Nichtstationarität oft durch eine Autokorrelationsdiagramm mit sehr langsamem Abfall angezeigt. Differenzierung zur Stationarität Box und Jenkins empfehlen den differenzierenden Ansatz, um Stationarität zu erreichen. Jedoch kann auch das Anpassen einer Kurve und das Subtrahieren der angepassten Werte aus den ursprünglichen Daten auch im Zusammenhang mit Box-Jenkins-Modellen verwendet werden. Bei der Modellidentifizierungsphase ist es unser Ziel, jahreszeitliche Erkennung, falls vorhanden, zu erkennen und den Auftrag für die saisonalen autoregressiven und saisonal gleitenden Durchschnittsbedingungen zu ermitteln. Für viele Serien ist die Periode bekannt und ein einzelner Saisonalitätsausdruck ist ausreichend. Zum Beispiel für monatliche Daten würden wir typischerweise entweder eine saisonale AR 12 Begriff oder eine saisonale MA 12 Begriff. Bei Box-Jenkins-Modellen wird das Modell vor der Montage nicht explizit entfernt. Stattdessen beinhalten wir die Reihenfolge der Saisonbegriffe in der Modellspezifikation zur ARIMA-Schätzsoftware. Es kann jedoch hilfreich sein, einen saisonalen Unterschied zu den Daten anzuwenden und die Autokorrelation und die partiellen Autokorrelationsdiagramme zu regenerieren. Dies kann bei der Modellidentifizierung der nicht-saisonalen Komponente des Modells helfen. In einigen Fällen kann die saisonale Differenzierung die meisten oder alle der Saisonalität Wirkung zu entfernen. Identifizieren Sie p und q Sobald die Stationarität und die Saisonalität adressiert worden sind, besteht der nächste Schritt darin, die Reihenfolge (d. h. (p) und (q)) der autoregressiven und gleitenden Durchschnittsterme zu identifizieren. Autokorrelation und partielle Autokorrelationsdiagramme Die primären Werkzeuge dafür sind das Autokorrelationsdiagramm und das partielle Autokorrelationsdiagramm. Die Stichproben-Autokorrelationsdiagramm und die Stichproben-Autokorrelationsdiagramm werden mit dem theoretischen Verhalten dieser Diagramme verglichen, wenn die Reihenfolge bekannt ist. Reihenfolge des Autoregressiven Prozesses ((p)) Speziell für ein AR (1) - Verfahren sollte die Autokorrelationsfunktion der Probe eine exponentiell abnehmende Erscheinung aufweisen. AR-Prozesse höherer Ordnung sind jedoch oft ein Gemisch aus exponentiell abnehmenden und gedämpften sinusförmigen Komponenten. Für autoregressive Prozesse höherer Ordnung muss die Stichproben-Autokorrelation mit einem partiellen Autokorrelationsdiagramm ergänzt werden. Die partielle Autokorrelation eines AR ((p)) - Prozesses wird bei Verzögerung (p & sub1;) und grßer, so dass wir die partielle Autokorrelationsfunktion untersuchen, um festzustellen, ob es einen Beweis für eine Abweichung von Null gibt. Dies wird in der Regel durch das Platzieren eines 95-Konfidenzintervalls auf das partielle Autokorrelationsdiagramm der Probe bestimmt (die meisten Softwareprogramme, die Beispiel-Autokorrelationsdiagramme erzeugen, werden ebenfalls dieses Konfidenzintervall aufzeichnen). Wenn das Softwareprogramm nicht das Konfidenzband erzeugt, beträgt es ungefähr (pm 2 / sqrt), wobei (N) die Stichprobengröße ist. Ordnung des gleitenden Durchschnittsprozesses ((q)) Die Autokorrelationsfunktion eines MA ((q)) Prozesses wird bei der Verzögerung (q & sub1;) und größer größer, so dass wir die Autokorrelationsfunktion der Probe untersuchen, um zu sehen, wo sie im Wesentlichen Null wird. Wir tun dies, indem wir das 95-Konfidenzintervall für die Stichproben-Autokorrelationsfunktion auf das Stichproben-Autokorrelationsdiagramm legen. Die meisten Software, die das Autokorrelationsdiagramm erzeugen kann, kann auch dieses Konfidenzintervall erzeugen. Die partielle Autokorrelationsfunktion ist im Allgemeinen nicht hilfreich, um die Reihenfolge des gleitenden Durchschnittsprozesses zu bestimmen. Form der Autokorrelationsfunktion Die folgende Tabelle fasst zusammen, wie wir die Autokorrelationsfunktion für die Modellidentifikation verwenden.


No comments:

Post a Comment